ZI10 Java API

Tutorial

1.0, May 2009

ZI0 Java API Tutorial Rev. 1.0

This work is licensed under the Creative Commons Attribution-Share Alike 2.5 India License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-sa/2.5/in/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

ZI0 Java API Tutorial Rev. 1.0

Table of Contents

I T 11 (o To 11 Tl 1 o] ISP 1
2. APL EXAMPIES o e 2
1. CONLrOIING LEDSoeiiiiiiii ettt ettt e e et e et e e e b 2
2. INterfaCing SWILCNESuuiiiiii et et e et e e e eb e eees 2
3. INErfaCiNg 12C DBVICESuiiiiiiieeiii et e e e e eaa s 4
4. Interfacing @ POLENTIOMELETc.uuiiiiiii e e 6
5. Controlling LED BIIgNINESSiviiiiiiiiiiii ettt et e e s 6
6. INtErfaCing SPI DEVICEScouuiiiiiiiii ettt e et e e enanns 7

Zilogic Systems Page iii

ZI0 Java API Tutorial Rev. 1.0

Chapter 1. Introduction

Z10 is a 10 framework for rapid product development. And as such it comes along with an API that can
be used to access the IO interfaces provided by the board. This document shows how to use the API,
to do simple tasks, which can then be used as a reference for building complex applications.

From the API's stand point, the ZIO motherboard has 5 modules.
1. GPIO
2. 12C
3. Sensor
4. PWM
5. SPI
These modules on the motherboard are accessed through an agent software running on the

motherboard. The agent software communicates with the PC and performs appropriate actions on the
modules.

Zilogic Systems Page 1

ZI0 Java API Tutorial Rev. 1.0

Chapter 2. API Examples

1. Controlling LEDs

LEDs can be easily connected to GPIO output pins as shown in the following circuit. When the GPIO
output pin is set to high, the LED turns on and when the pin is set to low, the LED turns off. The code
to blink the LED is listed below.

Figure 2.1. LED Circuit

GPIO Qutput O
LED
GND

GPIO Port

Listing 2.1. LED Blink, Java Code

i mport com zilogic.zio.*; O

class LED {
public static void nmain(String args[])
t hrows Protocol Exception, InterruptedException {

Agent agent = new Agent ("/dev/ttyUSBO"); 0O
GPl O gpi o = new GPl ((agent); O
int ledPin = 0; 0O

while (true) {
gpi 0. witeCQutputPin(ledPin, 1); 0O
Thr ead. sl eep(1000) ;

gpi 0. witeQutputPin(ledPin, 0); O
Thr ead. sl eep(1000) ;

O The ZIO API resides in a Java package called com zi | ogi c. zi 0. To use the API the package
has to be imported.

0 The Agent class is used to establish a communication link between the host and the board. The
device file that corresponds to the USB serial port of the ZIO board is passed as argument. Under
Linux, it is usually / dev/ t t yUSBx. Under Windows, it is COWK.

0 The GPI Oclass is used to control the GPIO module. The Agent object is passed as argument
to the constructor.

0 The GPI Ooutput pin to which the LED is connected.

00O The pin state can be controlled using the wr i t eQut put Pi n method of the GPI Oclass. The first
argument is the pin to control. The second argument is the value to be set on the pin.

2. Interfacing Switches

Switches can be connected to GPIO output pins as shown in the following circuit. When the switch is
not pressed, the input pin is internally pulled up to 5V, and reads high. When the switch is pressed, the
input pin is grounded, and reads low. The code to read the switch status is listed below.

Zilogic Systems Page 2

ZI0 Java API Tutorial Rev. 1.0

Switch D

GPIO Input O
GMND

GPIO Port

Listing 2.2. Switch Status, Java Code

i mport com zil ogi c. zi 0. *;

class Switch {
public static void main(String args[])
t hrows Protocol Exception, InterruptedException {

Agent agent = new Agent ("/dev/ttyUSB0");
GPl O gpi 0 = new GPl O(agent);
int swwtchPin = 0; 0O

while (true) {
int state;

state = gpio.readl nput Pi n(swi tchPin); O
if (state == 1) {
Systemout.println("Switch Of");
} else {
Systemout.println("Switch On");
}

Thr ead. sl eep(500) ;

O The GPIO input pin to which the switch is connected.
O The readl nput Pi n method of the GPI Oclass can be used to read the pin state. The pin no. is
passed as argument. The method returns the state of the pin.

The problem with the above approach is that the state of the pin has to be periodically polled. If done
at high rates, this can cause excessive load on the host CPU. This can be avoided by using a listener
mechanism. A listener GPl OCChangelLi st ener is registered with the GPIO module. Whenever a change
occurs in any of the pins, the i nput Changed method of the listener is invoked by the GPI Oclass.

Zilogic Systems Page 3

ZI0 Java API Tutorial Rev. 1.0

Listing 2.3. Switch Status with Notifications, Java Code

i mport com zil ogi c. zi 0. *;

class SwitchNotify {
public static void main(String args[])
t hrows Protocol Exception, |nterruptedException {

Agent agent = new Agent ("/dev/ttyUSB0");
GPl O gpi 0 = new GPl Q(agent);

GPlI CChangelLi st ener |istener = new GPl CChangeli stener () {

public void input Changed(GPl CChangeEvent event) { 0O
int switchPin = 0;

if (event.getPin() !'= switchPin) O
return;

if (event.getValue() == 1)
Systemout.println("Switch O f");

el se

Systemout.println("Switch On");
1

gpi 0. addChangelLi stener (listener); 0O
agent . wai t For Events(); O

O The i nput Changed method takes an event object as argument. In the case of GPIO, it is a
GPlI CChangeEvent object. The event object contains information about the event — the pin in
which the change occurred, the current state of the pin, etc.

O The i nput Changed method will be called when any of the input pins change. This check filters
out changes in other pins.

O The listener is registered with the GPI O object using the addChangeLi st ener method. The
listener instance is passed as an argument to the method.

O The wai t For Event s method on the Agent object is used to wait for events in an infinite loop.
And when an event occurs, the corresponding callback is invoked.

3. Interfacing 12C Devices

I2C is a bi-directional two-wire (data and clock) serial bus that provides a communication link between
integrated circuits. Examples of simple 12C-compatible devices found in embedded systems include
EEPROMSs, thermal sensors, and real-time clocks.

I2C 10 Expander (PCF8574) provides 8 digitial 10 lines that can be controlled, through the 12C bus. The
IO Expander can be interfaced to the 12C port as show in the following circuit. The code to access the
I2C 10 Expander is listed below.

Zilogic Systems Page 4

ZI0 Java API Tutorial Rev. 1.0

Figure 2.2. 12C 10 Expander Circuit

1 1 1 1

PO P1 P2 P3 Wee +5V

I2C 10 Expander SCL SCL

PCABST4 SDA SDA

ADO INT Interrupt
ig; GMD GMD

P4 PS5 P& P7 l

R 2C Port

Listing 2.4. 12C IO Expander, Java Code

i mport comzilogic.zio.*; O

cl ass | 2CExpander {

}

public static void main(String args[])
t hrows Protocol Exception, |nterruptedException {

Agent agent = new Agent ("/dev/ttyUSB0");
|2C i 2c = new | 2C(agent); O

int dev = 0x20; O

int[] wdata = new int[] { OxFF };

int[] rdata;

i 2c. config(100); O
try {
i2c.wite(dev, wdata); O
rdata = i 2c.read(dev, 1); O
} catch (1 2CNoAckException e) {
System out. println(e);
agent . cl ose();
return,

}

String nsg = String.format ("1 O Expander |nput: O0x%©2X', rdata[0]);
System out . printl n(nmsg);
agent . cl ose();

00O The | 2C class is used to control 12C module. The Agent object is passed as argument to the

O

O

constructor.

The 7-bit device address of the I12C device can be obtained from the data sheet, and the hardware
configuration of the pins A0, Al and A2. In this case it happens to be 0x20.

The conf i g method of the | 2Cclass is used to configure the bus clock frequency. The frequency
is specified in kHz.

The wr i t e method of the | 2Cclass is used to write bytes to the I12C device. The device address is
specified as the first argument. The array of bytes to be written is specified as the second argument.
The r ead method of the | 2C class is used to read bytes from the 12C device. Th device address
is specified as the first argument. The no. of bytes to be read is specified as the second argument.
The method returns an array of bytes read from the device.

Zilogic Systems Page 5

ZI0 Java API Tutorial Rev. 1.0

4. Interfacing a Potentiometer

A single turn potentiometer in a variable resistor connection can be used in volume control applications.
The potentiometer is interfaced to the Sensor port as shown in the following circuit. The internal pull-up
and the potentiometer are in voltage divider configuation. The voltage drop across the potentiometer is
measured by the ADC. The code to read the voltage from the sensor input is given below.

Figure 2.3. Potentiometer Circuit

3 Sensor Input O
4J2_

1 GND

Sensor Port

Listing 2.5. Potentiometer, Java Code

i mport comzilogic.zio.*; O

cl ass Pot {
public static void main(String args[])
t hrows Prot ocol Exception, |nterruptedException {

Agent agent = new Agent ("/dev/ttyUSBO");
Sensor sensor = new Sensor(agent); 0O
int potPin = 0; 0O

while (true) {
doubl e val ue = sensor.readPi n(potPin); 0O

String nmsg = String.format ("Sensor Value: %.2f", val ue);
System out . printl n(msg);

Thr ead. sl eep(500) ;

}

OO The Sensor class is used to control Sensor module. As with other module objects, the Agent
object is passed as argument to the constructor.

O The Sensor input pin to which the pot. is connected.

O ThereadPi n method of the Sensor class can be used to get the voltage at the pin. The pin no. is
passed as argument to the method. The function returns the voltage on the pin as a floating point
value. In case the raw ADC value is required, r eadPi nRaw method can be used. The method
returns a value between 0x0000 and OxXFFFF.

Note: Even though the ADC is 10-bit, the value is oversampled to 16-bits, to make the interface future
proof.

5. Controlling LED Brightness

The brightness of an LED can be controlled by driving the LED using a PWM signal. PWM is a digital
control technique wherein the processor adjusts the duty cycle of a sequence of fixed-width pulses. The

Zilogic Systems Page 6

ZI0 Java API Tutorial

Rev. 1.0

LED can be interfaced to the PWM port as shown in the following circuit. When the duty cycle increases,
the ON period of the PWM signal increases and the LED brightness increases. The code to control the

LED brightness is given below.

Figure 2.4. LED Brightness Circuit

PWM Output O
LED
GMND

PWM Port

Listing 2.6. LED Brightness Control, Java Code

i mport com zil ogi c. zi 0. *;

cl ass Brightness {
public static void main(String args[])
t hrows Protocol Exception, InterruptedException {

Agent agent = new Agent ("/dev/ttyUSB0");
PYWM pwm = new PWM agent); O
int ledPin = Ox1; O

pwm set Freq(l edPin, 2); 0O
pwm set Duty(l edPin, 0); 0O
pwm start (l edPin); 0O

while (true) {
for (int i =0; i <100; i += 3) {
pwm set Duty(l edPin, i);
Thr ead. sl eep(10);

0 The PWMclass is used to control the PWM module. As with other module objects, the Agent object

is passed as argument to the constructor.

O The PWM output pin to which the LED is connected. The PWM API accepts a list of pins, so that

the PWM parameters of multiple pins can be set simultaneously.

O The PWM freq is set using the set Fr eq method of the PMMclass. The list of pins is passed as the

first argument. The frequency in kHz is passed as the second argument.

O The PWM duty is set using the set Dut y method of the PWMclass. The list of pins is passed as the

first argument. The duty cycle in percentage is passed as the second argument.

O The PWM signal generation is started using the st art method. And can be stopped using the

st op method.

6. Interfacing SPI Devices

Serial Peripheral Interface (SPI) is an inexpensive chip interconnection bus, popular on circuit boards.
SPI devices like the SPI EEPROM (93C46) can be interfaced to the SPI port as show in the following

circuit. The code to access the SPI EEPROM is given below.

Zilogic Systems

Page 7

ZI0 Java API Tutorial Rev. 1.0

Figure 2.5. SPI EEPROM Circuit

Yoo +5V

Ccs S5

SPI EEPROM SK SCK
FMS93C4e DO MOSI
DI MISO

GND GND
SPI Port

Listing 2.7. SPI EEPROM, Java Code

i mport com zilogic.zio.*; O

cl ass EEPROM ({
public static void main(String args[])
t hrows Protocol Exception, |nterruptedException {

Agent agent = new Agent ("/dev/ttyUSB0");
SPI spi = new SPI (agent); O

GPl O gpi o new GPl Q(agent); 0O

int ssPin 4;

spi . confi g(100,
SPl . CPOL_| DLE_LOW
SPI . CPHASE LEAD EDGE,

SPI . ENDI AN_MSB_FI RST) ; O

int[] wdat a;
int[] rdata;
int addr = 0x2;

gpi 0. witeQutputPin(sskPin, 1); 0O

try {
wdat a new int[] { Ox03, addr, 0x00, 0x00 };

rdata = spi.witeRead(wdata); 0O
} finally {
gpi 0. witeQut put Pin(sskPin, 0); O

}

String nsg = String.format ("EEPROM has Ox%02X%02X at address 0Ox%94X",
rdata[2], rdata[3], addr);

System out . printl n(nmsg);

agent . cl ose();

}

OO0 The SPI class is used to control SPI module. The Agent object is passed as argument to the
constructor.

O The GPlI Oclass is used for controlling the slave select pin. The slave select pins available on the
SPI port are GPIO output pins 4 and 5.

Zilogic Systems Page 8

ZI0 Java API Tutorial Rev. 1.0

g

The confi g method of the SPI class is used to configure the bus clock frequency, the clock
polarity, the clock phase, and the data endianess.

The slave select signal is made high while accessing the chip, using the GPIO wr i t eQut put Pi n
method.

The wri t eRead method of the SPI class is used to write / read bytes to / from the slave. The
bytes to be written is specified as argument. An equal no. of bytes is returned as a list. Here a 16-
bit value is read from address 0x2.

Zilogic Systems Page 9

